
Report

Guide for updating

the Kubernetes cluster
Migrating from the 1.25 to 1.26 version

Pod Security Policy→ Pod Security Admission

Table of contents
5

6

7

10

12

15

17

18

19

20

21

22

23

25

26

27

28

Updating services relying on PSP

Making a backup copy of the cluster

ArgoCD

Initial operations before the implementation
of MetalLB

Configmap and IPAddressPool declaration

Comparing ArgoCD to the environment

The update of MetalLB

Portworx

Setting up the StorageCluster manifest

Updating the service manifest

Preparing the portworx-operator manifest

Preparing the StorageClass manifest

Preparation of manifests

Modification of manifests

Portworx update

Prometheus Stack

Preparation of the script

and values.yml file

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16

17.

[1/2]

Table of contents
29

31

33

36

37

38

39

40

Preparation of the restore point

Strict manifest for the current version
available on the cluster

Comparing ArgoCD to the cluster

Updating Prometheus Stack

Blackbox Exporter

Preparing ArgoCD for the cluster

Update of the Control-Plane nodes

Updating the Kubernetes cluster

18.

19.

20.

21.

22.

23.

24.

25.

[2/2]

We present to you the report "Kubernetes cluster upgrade guide

- Migrating from version 1.25 to version 1.26 - Pod Security Policy → Pod Security
Admission".

Every evolution of technology brings with it challenges, but also new opportunities.
The latest version of the Kubernetes cluster, 1.25, sees the departure of
PodSecurityPolicy (PSP) in favor of a more flexible and modern method, called Pod
Security Admission (PSA). This report discusses key steps to take before upgrading
your cluster, focusing on services that have used PSP to date.

Introduction

Konrad Matyas
Vice CEO of Core Logic

kzadlo@core-logic.com

www.core-logic.com5

Updating services
relying on PSP

1. Metallb – for the management of LoadBalancer

2. Portworx – for storage management

3. Prometheus Stack – for cluster monitoring

4. Blackbox Exporter -monitorowanie zdalnych usług

Metallb plays a key role in the management of LoadBalancer services within the cluster. Before the

migration, you should have the latest version of Metallb, optimized for cooperation with Pod Security

Admission.

When using Portworx for storage management, it is advised to have the latest version, fully compliant with

the new security policy.

If you are using tools from the Prometheus stack for monitoring the cluster, you need to update

Prometheus stack to the newest version, to avoid any issues related to security.

It is advised to check that blackbox-exporter – which is responsible for the monitoring of remote services

– complies with the newest security standards.

You can get the list of the resources to update with the following command:

1.

Where

 px-operator = portworx

 speaker, controller = metall

 monitoring = prometheu

 blackbox-exporter = blackbox-exporter

At first, we present the key elements for the management and monitoring of the cluster

when it comes to updates and compliance with the highest security standards. In any

situation, it is always best to have the newest software versions, that have been optimized

to comply with the highest security standards and to ensure the stability and reliability of

the cluster.

Making a backup copy
of the cluster2.

kzadlo@core-logic.com

www.core-logic.com6

The rsync tool allows you to copy folders from /etc/kubernetes/pki/ and /etc/kubernetes/manifests/
while preserving the structure of catalogs. Additionally, you can exclude useless folders, f.e. tmp. files.

Making a copy of ETCD

Before making a copy of ETCD, you need to confirm the location of the certificates and the endpoint,
with the following command:

The process of making a backup is very similar to the updating process
of Kubernetes (k8s) to the 1.24 version.

You will find below instructions on how to create a backup copy of the Kubernetes cluster,
including a copy of the certificates, manifests, and ETCD data.

To secure the certificates and manifests from the Kubernetes cluster, you can use
the rsync tool:

You can then make a backup copy of ETCD, with the following command:

The present commands will create an ETCD backup in the snapshot-pre-boot.db. file.

ArgoCD

ArgoCD is an essential tool for the safe and monitored upgrade of services in the Kubernetes

cluster. Thanks to ArgoCD, it is possible to visually analyze the differences between the

prepared manifest and the current state of the environment. But the biggest advantage is the

flexible rollback option, allowing you to restore the previous version – making ArgoCD an

irreplaceable tool when updating virtually any object of the cluster.

Setting up the application in ArgoCD

The structure of the application manifest

When configuring an application in ArgoCD, you should rely on the set of manifests defined in the cloud-

gitops repository. While ArgoCD’s panel offers the possibility of directly creating applications, the article

focuses on the declaration-based approach in the repository, which allows consistent management of

applications in different systems.

The declaration of the application should be adapted to the overall structure of the manifest, which will

allow for an easier adaptation to specific services. In the present situation, it was assumed that the

methodology used in this case would rely on the cloud-gitops repository.

kzadlo@core-logic.com

www.core-logic.com7

3.

The manifest should contain the following entry:

kzadlo@core-logic.com

www.core-logic.com8

And this is the example declaration for Metallb prod:

The declaration itself relies on the creation of a new file/manifest in the path

3. ArgoCD

3.

kzadlo@core-logic.com

www.core-logic.com9

It is advised to create new applications on separate branches in the GIT code repository.
This approach allows to maintain the safety of other elements of the cluster, whenever
changes are made in a given project. Each application should have its own developing
environment, which will make it easier to control and monitor changes. In the situation where
previous applications have been created in the cluster, it is advised to turn off the automatic
synchronization (Auto-Sync).

It is also advised to make sure that Auto-Sync is turned off, or at least is turned off manually on
the created branch. You can do so by changing the value of {{target_app_repo_branch}} in the
application’s definition.

It is then necessary to delete the entry:

After performing the necessary operations, you can synchronize the main ArgoCD application.

ArgoCD

Updating MetalLB in the ArgoCD context requires an appropriate setup of the cluster,

especially when it comes to assigning and managing IP addresses. The following are key

steps and important notes for the proper assigning of IP addresses before the implementation

of MetalLB.

Proper assigning of IP addresses

Assigning IP addresses to services from the cluster, especially with ArgoCD, is not necessary. However, it is

best to maintain the rigid configuration of IP addresses for the objects that require it.

It is worth verifying which services require constant assignment of IP addresses, and which can use

dynamically assigned addresses. Before executing the next steps, you should verify if the cluster is ready

to be updated. In the case of MetalLB, it is essential to declare the IP addresses, especially if they are

permanently required.

It is worth checking that services have their constant IP address assigned, especially for services making

use of DNS or having declared fixed IP addresses on other services.

For the current cluster that we are updating, all the services did not necessarily have any assigned IP

addresses before the update, which resulted in assigning random addresses from the pool. This can result

in unexpected changes if services rely on the provided IP addresses.

We can verify that with the following command:

Maintaining Stable IP Addresses

kzadlo@core-logic.com

www.core-logic.com10

Initial operations before the
implementation of MetalLB 4.

kzadlo@core-logic.com

www.core-logic.com11

If the address is missing, it should be defined by a manifest, f.e.:

Change the manifest so it looks like this:

For ArgoCD, the address should be assigned by manually editing the manifest directly on the cluster.

4. Initial operations before the
implementation of MetalLB

Firstly, you should create a path in the ArgoCD application itself, in this case,

a folder structure was created.

In this example, using the Kustomize tool for the cluster brings an additional value but is not necessarily

required for a correct configuration. The use of the Kustomize tool can improve transparency and

facilitate the steps for the configuration of the cluster.

This is what the proper file structure looks like:

kzadlo@core-logic.com

www.core-logic.com12

In this present cluster, MetalLB has not been implemented yet with the help of ArgoCD – which requires a

full reconstruction of the configuration and confronting it with the current state managed by ArgoCD.

Setting up configmap and IPAdressPool

To set up the cluster for updating, there are a couple of essential steps to follow for the configuration, like

setting up configmap or IPAdressPool. It is important that they are necessary to update the cluster, they

do not need to be performed when comparing ArgoCD to k8s.

In the new version, the configuration has changed – the new method of assigning addresses requires the

setup of configmap and IPAdressPool. To adapt to those changes, it is essential to understand the new

procedures for the management of IP addresses. Please note that those steps are essential for the proper

configuration of the cluster, but are not required during the comparison operation of ArgoCD to k8s.

In the context of changes in the way addresses are assigned and managed after the update, it is worth

noting that in the previous version it was based on configmap, which can be viewed with the following

command:

Manifest, configmap and
IPAddressPool declaration5.

You should see as follows:

kzadlo@core-logic.com

www.core-logic.com13

As a result of those changes, it is essential to implement two other manifests, which will modify the way
addresses are managed. In the present situation, we had to open an additional port, without which one of
the webhooks would not work. This operation was only necessary in our situation, and results solely from
its specifications and the functionalities of the service.

Two additional manifests were created on the /metallb/overlays/prod/configmap.yml path, containing
a copy of ConigMapy.

5. Manifest, configmap and
IPAddressPool declaration

5.
And a manifest containing new declarations and ad.dress conifg.yml:

kzadlo@core-logic.com

www.core-logic.com14

kind: L2 Advertisement wymaga wcześniejszego wdrożenia pliku /metallb/base/crds.yml. Bez
wcześniejszej deklaracji CustomResourceDefinition zawierającej ten wpis nie będzie on działał.

kind: L2Advertisement requires an initial implementation of the /metallb/base/crds.yml file.
Without a previous CustomResourceDefinition declaration containing this entry, it will not work.

Like explained previously with the present cluster, a manifest declaration was necessary to open an
additional port 9443 without which one of the WebHooks would not work.

Example of a declaration in the config.yml file below:

Finally, declare the new files in /metallb/overlays/prod/kustomization.yml

Manifest, configmap and
IPAddressPool declaration

Comparing ArgoCD
to the environment6.

kzadlo@core-logic.com

www.core-logic.com15

The first step is essential for setting up the manifest for the current version of MetalLB.
It is essential since in the current example, the manifest for this application was missing
in the Repository and ArgoCD.

Without it, we will not be able to safely and efficiently return the operation or do what we call “rollback”.

In ArgoCD, rollback consists of returning to the previous, stable state from the last commit of the
indicated repository.

The most efficient way for the comparison of environments is the generation of templates for a specific
application with the help of Helma. Specify the current version of MetalLB and generate a template using
the following command:

This process will allow you to accurately determine the differences between the current and the earlier
version of the MetalLB application, which is crucial for the possible performance of an effective and safe
rollback operation.

The current version can be specified by describing under the controller or speaker:

A tip here is to split the manifest into two separate files. One of them should contain all the entries from
CustomResourceDefinition, and the other should contain the other objects. The last step here is the
addition of appropriate entries to the /metallb/base/kustomization.yml file.

Attention!

It is extremely important not to synchronize the application on the ArgoCD side in
subsequent stages. Our current objective is solely to verify the changes and compare
the manifest in ArgoCD to the current state of the cluster. When it comes to ArgoCD, we
limited our use to only the “Refresh” and “App Diff” buttons.

6.

kzadlo@core-logic.com

www.core-logic.com16

The “App Diff” functionality is key for comparing the changes between ArgoCD and the cluster.
It is best to use the “Compact diff” to simplify the change analysis process. Our mission is
to eliminate all the differences by bringing modifications directly in the manifests, and then
the execution of commit and push for/in the repository. It is also worth your time to regularly
compare the differences with the help of “App Diff”.

In the case of MetalLB you can also make use of the values,yaml file, that can be used for template
generation, adding the -f values.yaml flag to the command. It is worth noting that this functionality
can be limited in the case of MetalLB, and the values.yaml file becomes more useful for the update of
prometheus-stack. After a successful comparison of ArgoCD with the cluster and once “App Diff” doesn’t
declare any major differences, you can start the synchronization process by clicking on “Sync”. Thanks to
this process, we gained a restore point, and the implementation of MetalLB by ArgoCD is a complete
success

This process is mostly similar when comparing ArgoCD to the environment. A key change is the
generation of the template file with the most recent version of MetalLB with the help of this command:

It is important to remember how essential it is to execute all the operations that we described in the
previous step. Because we are working on the update of the version, major changes may appear when
you click on the App Diff tool.

It is essential that elements like ‘name’ or ‘namespace’ keep their original value. This means that those key
values stay the same even in the case of major changes. Remember that differences in App Diff can be
quite significant, so there is a need for conscious monitoring of these changes and possible manual
correction to ensure consistency and correctness of the environment configuration.

Setting up the manifest

Comparing ArgoCD
to the environment

After the generation of the manifest for the new version, we finally proceed to the upgrade
of the application in ArgoCD.

Remember that before proceeding to the updating process it is final to set up the configuration for
configmap and IPAddressPool. It’s best to start with the synchronization of CRD objects because those
are essential for the configuration and they’re worth implementing before the update.

CRDs are often backward compatible, which means that their update should not have any negative effect
on the functioning of the cluster or its services. However, in the case of CRD, it is essential to make the
synchronization with the “Replace” option. Forgetting this step could lead to synchronization mistakes in
ArgoCD.

After the synchronization of CRD objects, you can proceed to the synchronization of the other elements.
After the finalization of this process in ArgoCD, check the status of pods in namespace metallb-system
with the following command:

The update of MetalLB7.

Each pod should go through the restart process and get the status “Ready 1/1” and “Status Running”.
Monitoring this process helps to ensure that the update will be made appropriately and that all the
subsystems will be stabilized accordingly.

kzadlo@core-logic.com

www.core-logic.com17

Before beginning the implementation of Portworx in the Kubernetes cluster with the use of ArgoCD,

there are a couple of initial steps that are worth following through.

In order to efficiently manage Portworx with the help of ArgoCD, it is best to create a separate application

dedicated to that service. The file structure should comply with the path declared in the ArgoCD

application configuration.

Portworx8.

When organizing the structures of Portworx files, it is important to check that the path is consistent with

the one declared in the ArgoCD application configuration. In the example above, a portworx folder was

created, with the kustomization.yaml folder and the structure for eventual overlayers. The portworx.yaml

file will contain a specific configuration for Portworx.

If Portworx has not been under the management of ArgoCD yet, it is essential to create the appropriate

environment. As with MetalLB, this step will allow us to create a restore point. In the situation where an

earlier configuration exists, it is advised to make sure to restore the environment.

In the next step, start the synchronization process of the application in ArgoCD, to implement the changes

defined in the configuration files.

Przyrównanie ArgoCD do klastra

kzadlo@core-logic.com

www.core-logic.com18

Setting up the StorageCluster
manifest9.

If the implementation process and the potential initial update have been properly executed,

the Storage Cluster manifest should be now available for downloading on the Portworx panel.
Below are the necessary steps for the realization of the manifest, as well as for the eventual
update of the service.

In the portworx panel, in the section “Install and Run”, you should click on the “Download”
option that appears when clicking on “Actions”.

kzadlo@core-logic.com

www.core-logic.com19

After downloading the manifest, it is important to make sure that the entry for portworx.io/install-source is
the same as for key user= and c=, and then if the entry name: is the same as for portworx.io/install-source
c=

If differences appear, it is advised to download data directly from the cluster and to insert it directly into
the manifest. The ready manifest should be stored in the following file: /portwrox/overlays/dev/storage-
cluster.yml.

Updating the service manifest10.
When updating the Portworx service, it is enough to make changes
in the appropriate sections of the manifest.

· In the manifest folder, find the portworx.io/install-source entry.

· Change the value of kbver= to the appropriate Kubernetes version, f.e. 1.25.11.

· Check if the value under name: is the same as in the previous version.

· If differences appear, just change the value of the name: so it’s consistent with the previous version.

· Check if the value under user= in the section xxx is the same as in the previous version.

· Check that the key user= is consistent with the previous version.

After implementing those changes, the Portworx service manifest is ready to be applied in the
Kubernetes cluster. Do not forget to verify the correctness of the configuration and that the applied
changes are consistent with the updating processes.

To change the Kubernetes version (kbver=):

Verification of entry (name:):

Verification of the (user=) section:

kzadlo@core-logic.com

www.core-logic.com20

Preparing the portworx-
operator manifest11.

kzadlo@core-logic.com

www.core-logic.com21

In the portworx panel, go to the “Install and Run” section and keep on clicking on “Next” until you

reach the final step. In the “Portworx Operator” section, click on the eye icon next to the operator
manifest, copy the Portworx Operator manifest, go to the /portworx/base/catalog, and create the
portworx-operator.vml file. Then you just need to insert the copy of the Portwork Operator manifest into
the new file.

After executing those steps, the Portworx Operator manifest will be available in the local repository,
ready to be used in the configuration of the Kubernetes cluster. Check the correctness of the copied
manifest and apply it following the requirements of the application.

To access the StorageClass manifest for Portworx, run the following command in the

terminal to receive the YAML of the StorageClass manifest.

After this operation, the manifest will be displayed in the console. You can also save the manifest directly

in the file with this command:

Preparing the StorageClass
manifest12.

kzadlo@core-logic.com

www.core-logic.com22

This step will save the StorageClass manifest to the portworx-storageclass.yml file.

After executing those steps, the StorageClass manifest for Portworx will become available, which you

can then edit or use in other configuration processes. It is essential to monitor and verify the values in

the manifest before its application.

Preparation
of manifests

To update the manifest through the Portworx panel, login to the platform and choose the current

specification in the “Install and Run”. Then clone it, defining new versions for Portworx and the cluster.

It is essential to define a new version, for both Portworx and the cluster itself. In the next steps, it is required

to adapt the specifications to our needs.

kzadlo@core-logic.com

www.core-logic.com23

The final result is a familiar view from which you can download all the necessary manifests.

13.

After the cloning process, download the manifest and insert it in the dedicated path for your environment
f.e. /portworx/overlays/dev/. On the last resuming screen will be displayed information concerning the
creation of a Secret type object.

In the situation where you have the right Secret object, there is no need to create another one. Thanks to
this step, you can update the Portworx manifest, adapting it to the current trends.

13.

kzadlo@core-logic.com

www.core-logic.com24

Preparation
of manifests

In this step, it is also primordial to verify and potentially conduct some changes.
These data are key, and if necessary, remember to replace them. Additionally, it is essential to create
and add the appropriate Secret object that we previously mentioned.

To realize that, you can copy the Secret object directly from the cluster with the following command:

Then, add the copied data to the file in the dedicated path, f.e. /portworx/overlays/px-essential-
secret.env. It is also worth remembering to not place the Secret in such a way in the version control
system, like GIT. This is valid for all Secret objects, not just this particular one. If its addition to the repository
is required, is it advised to encrypt it with a GPS key.

kzadlo@core-logic.com

www.core-logic.com25

Modification
of manifests14.

Before starting the update, it is required to set up the kustomization.yml files, which will
connect all the previously created manifests. Each folder (/base/, /overlays/dev/, /overlays/prod)
needs to have a /portworx/base/kustomization.yml file.

The folder /base/ nomen omen is used as a base. The manifests declared in the kustomization.yml file
from this folder are the base for manifests from the /overlays/ folder.

kzadlo@core-logic.com

www.core-logic.com26

Portworx

update15.

/portworx/overlays/kustomization.yml

After executing those operations, you can compare the manifest with the cluster. This comparison can be
made through ArgoCD after sending changes to the GIT repository. It is best to avoid the use of the Sync
option and to prefer the Refresh one, as well as App Diff.

If ArgoCD shows no errors or changes that impact the functionality of the cluster, we can start the
synchronization of the ArgoCD application. You can observe the changes on the cluster side with the
following command:

After stabilizing the cluster, the update will be complete.

Updating the prometheus-stack into the cluster was one of the most time-consuming

and demanding processes. It is mainly caused by the complexity of the Prometheus-stack itself

which is made of several components and because of the importance of recreating ArgoCD from scratch.

Despite the many hours required to implement the Prometheus-stack with ARgoCD, it is a justified and

necessary decision, especially in the context of long-term development of the cluster and future updates.

Before starting the update it is important to remember a couple of key steps – it is important to remember

to verify that the created application in ArgoCD is called “monitoring” and that the definition of the

application is located in the monitoring.yml file in the repository.

It is also important to verify that the structure of the files corresponds to the cluster’s requirements and

that all the necessary files and configurations are available before starting the update. By taking care of

those details at the preparation stage, complications are less likely to happen and it ensures a smooth

updating process of the prometheus-stack into the cluster.

Preliminary operations

kzadlo@core-logic.com

www.core-logic.com27

Prometheus

Stack16.

As a first step, it is necessary to prepare the script for the generation of the prometheus-stack
with the help of the Helm tool.

Before the first generation of the manifest it is important to define the version that is currently used in the
cluster. This way, you have a “clear” manifest for the current version. Because of the complexity and size of
the prometheus-stack, the use of values.yml files can be very beneficial (and sometimes is required).

You will find below Helm’s instruction, to generate a manifest, taking into consideration the values from
values.yml files and the ({{target-version}}):

kzadlo@core-logic.com

www.core-logic.com28

Preparation of the script

and values.yml file17.

Before the generation, it is worth getting acquainted with the documentation of the values.yml file. This file
allows the adaptation of the manifest to the specifications of the cluster and other related services, by
predefining parts of variables.

Thanks to this process of generating manifests has become more and more flexible and adapted to
individual needs as well to the specifications of a given cluster.

In regards to the consequent size of the prometheus-stack manifest, an efficient approach

is the local change comparison. The realization of this task by ArgoCD is therefore quite complicated

because of the important quantity of data that has to be treated and showcased in the browser.

In the cluster’s situation, it is best to use different methods and use local change comparison.

It is however best to create a restore point, to which we will refer when comparing the new manifests.

This is valid for manual setup and for downloading the prometheus-stack manifest from the cluster.

This operation should be prepared from a strict manifesto for the current version of the cluster. It is worth

using the previously prepared script or the command to generate templates. However, you should

execute this command with the option --include-crds=false, which will drastically reduce the size

of the file.

You can now proceed to the next steps of setting up the restore point and local change comparison

in the manifests for the prometheus-stack.

Setting up the strict manifest for the current version available on the cluster can be made with the help of

the previously prepared script or the command to generate templates. However, you should execute this

command with the option --include-crds=false, which will drastically reduce the size of the file.

If the strict manifest is already available, it is worth creating a backup. To achieve this, create a file

containing the same objects as the manifest. In other words, you need to create a copy of the raw

manifest, by directly downloading the objects from the cluster.

Setting up the strict manifest for the current version available on the cluster

Setting up object backup according to the strict manifest

kzadlo@core-logic.com

www.core-logic.com29

Preparation
of the restore point18.

kzadlo@core-logic.com

www.core-logic.com30

The raw manifest can contain various objects, like f.e. Service, which will be

displayed as follows:

18. Preparation
of the restore point

The creation of a backup is made by copying the objects from the cluster and saving them in

a file that will serve as a restore point in case of need to return to the original configuration.

It is advised that the download of the manifest object Service named monitoring-kube-prometheus-

kube-controller-manager is made with the following command:

kzadlo@core-logic.com

www.core-logic.com31

Strict manifest for the current
version available on the cluster19.

Marked sections can be removed successively. They will only interfere with the process of comparing files.

kzadlo@core-logic.com

www.core-logic.com32

You should repeat this operation for each object from the raw manifest, according to their order. Each

object from the manifest should be copied from the cluster and saved in the appropriate file, creating this

way a restore point for specific configurations.

After copying all the objects, you need to proceed to a comprehensive file comparison. A practical

operation that will facilitate your work is comparing the objects right after saving them in the prometheus-

stack-old.yml file. This way, it is possible to make changes and corrections in the values.yaml file on an

ongoing basis.

19. Strict manifest for the current
version available on the cluster

Similar to the situation with the previous application, this step is only necessary

if prometheus-stack isn’t available from ArgoCD’s side. In such a situation, comparing

the application to the current state of the cluster is essential.

Unfortunately, not all variables can be defined in the values.yaml file described earlier. Some settings

do not find their equivalent there, which may require an alternative approach to define them.

In this situation, we can use the kustomize tool, which allows for the flexible addition of extra

configurations, or even full manifests.

The kustomization.yml file is defined in the following way:

Plik kustomization.yml jest definiowany w następujący sposób:

Creating new definitions – patch.yml and secrets.yml

kzadlo@core-logic.com

www.core-logic.com33

Comparing ArgoCD
to the cluster20.

kzadlo@core-logic.com

www.core-logic.com34

The patchesStrategicMerge mechanism allows you to flexibly overwrite only those variables

or configurations that are of interest, leaving the rest intact. This keeps previous entries updated

rather than completely replacing them.

Entry in the raw manifesto:

20. Comparing ArgoCD
to the cluster

Content of the patch.yml file:

Result of kustomize build:

kzadlo@core-logic.com

www.core-logic.com35

Additionally, it is essential to add a Secret object. This task should be performed the same way we did with

“Portworx Secret”.

20. Comparing ArgoCD
to the cluster

The updating process is pretty similar to the ones you went through for previous services –

generate the manifest for the most recent version, taking into account the values.yml,

patch.yml, and secrets.yml files.

The command for the generation of the manifest is presented as follows:

kzadlo@core-logic.com

www.core-logic.com36

Updating

Prometheus Stack21.

When generating the manifest for the new version, it is important to remember to change the switch –

include-crds to true – as well as to separate the manifests, the same way we proceeded until now.

Then, the changes were compared using the App Diff tool in ArgoCD.

This allows to catch even the smallest changes that could have been missed earlier. After finalizing this

process and making sure there are no key differences or errors, it is time for the synchronization of the

application with ArgoCD.

If App Diff does not detect any major differences, you can safely continue and proceed to the

synchronization of the application, guaranteeing consistency and compatibility of configuration with

cluster expectations and requirements.

For the present cluster, upgrading the Blackbox Exporter version was essential to maintain

the stability and efficiency of monitoring services. The Blackbox Exporter update process is
not significantly different from the one for the application, but here there was no need to create
a separate application before implementing changes.

When it comes to the monitoring architecture, Blackbox Exporter plays a key role, enabling the collection
and analysis of data on the status and availability of services. For this reason, it is worth using the existing
monitoring application, which has been designed and adapted to for the update of the entire range of
monitoring tools, including prometheus-stack.

With the monitoring application that has already been configured and optimized for requirements, the
Blackbox Exporter update process could be carried out efficiently and the risk of possible complications or
incompatibilities in the monitoring environment was minimized. This way, we ensured smooth monitoring
operations and high-quality services by the cluster.

To set up the manifest for the update of Blackbox Exporter, it is advised to rely on the values.yaml file as
well as the Helm tool.

To generate the manifest, use the following command:

Setting up the manifest

kzadlo@core-logic.com

www.core-logic.com37

Blackbox Exporter22.

In the previous command, {{target-version}} corresponds to the current version of Blackbox on the cluster,
based on the values-blackbox.yml file.

Thanks to this operation, we obtained a manifest ready to be implemented and that takes into account
the specifications of the monitoring environment and ensures compliances with the clusters’
requirements.

Like with the previous versions, it is essential to precisely adapt the file to the requirements
and configuration of the cluster. In order to identify the essential changes, it is worth using
the AppDiff tool available in ArgoCD, that will allow you to compare te repository with the current
state of the cluster.

The goal is to compare the ArgoCD manifest with the real state of the cluster, to verify that the
configuration are compatible. This operation is not very different from the previous ones.

After identifying the differences and implementing the essential changes, the new manifest should
be added to the /prometheus-stack/base/kustomization.yml file.

The final structure of the file in the main folder should look as follows:

kzadlo@core-logic.com

www.core-logic.com38

Preparing ArgoCD
for the cluster23.

After having compared the repository with the current state of the environment, we can proceed to the
synchronization of the application with the help of ArgoCD. This way, we have a restore point and we
ensure consistency and coherence of the application’s configuration with the requirements and
expectations related to the cluster.

After updating all the different components, it is time to update Kubernetes.

The first step is the update of the control-plane nodes.

To perform the update, you must first determine the appropriate version that you want to install.

Then, after selecting the appropriate version, you can install it by:

Updating the kubeadm tool

kzadlo@core-logic.com

www.core-logic.com39

Update
of the Control-Plane nodes24.

After installing the appropriate version of the kubeadm tool, it is time to prepare the upgrade plan by

executing this command:

Then, complete the update of the Kubernetes cluster with the following command:

kzadlo@core-logic.com

www.core-logic.com40

Updating
the Kubernetes cluster25.

Then we updated kubelet and kubectl.

After installing the new versions, restart the kubelet service:

Ultimately, it is worth verifying that the node was put back to work with the help of the following command.

Additionally, check that <node-to-drain> is the name for the nodes that have been updated earlier.

After the upgrade of the kubeadm tool, you also need to update kubelet and kubectl. Before the update,

it is best to deactivate their wall, and to reactivate it after the update. To update kubelet and kubectl,

follow these steps:

After the node was designated for updating, it was eliminated from the tasks and the correctness of the

information was ensured.

Nody worker

Updating the worker nodes is made possible with the Ansible playbook, which is separated into 2 files

 update-node-k8s.yml – responsible for the update of Kubernetesa

 update-node-os.yml – responsible for the update of the operation system and for the restart of the

server

Please note, that those operations should be executed one by one, node by node, to ensure the continuity

of the service availability.

This is the end of the guide to upgrading the Kubernetes cluster from version 1.25 to
version 1.26. In the latest version of the Kubernetes cluster, a transition has been
made from the mechanism of the Pod Security Policy (PSP) to a more flexible and
modern method, called Pod Security Admission (PSA). This is a significant change
that requires careful preparation and strict adherence to procedures when
implementing and updating tools in the cluster. The article discussed key steps
before upgrading a cluster, focusing on services that previously used PSP

The report provides a comprehensive overview of the key aspects involved in
upgrading a Kubernetes cluster, emphasizing the need to incorporate changes to the
security mechanism and follow upgrade procedures for each cluster component.

Summary

Konrad Matyas
Vice CEO of Core Logic

We will share our knowledge and experience,

to help you solve your problems

and create the product you've always wanted.

Contact us

Web:

www.core-logic.com

Feliksa Radwanskiego 15/1,

30-065 Krakow, Poland

Phone & Whatsapp:

+48 606 524 052

E-mail:

kzadlo@core-logic.com

Konrad Matyas
Vice CEO of Core Logic

